
MA 3046 - Matrix Analysis Problem Set 4

1. Consider the subspaces:

U = span


 10
1

 ,
 11
2

  and V = span


 02
1


a. Determine whether U and V are complementary subspaces.

solution:

U and V will be complementary if and only if the combination (union) of
their bases is a basis for <3. In this case, the combined bases form the columns
of

B =

 10
1

1
1
2

0
2
1


But direct computation (i.e. eliminating the augmented matrix [ B | I ] to
row-reduced echelon form) shows that

B−1 =

 3 1 −2
−2 −1 2
1 1 −1


Therefore, since B is invertible, its columns must be a basis for <3. Hence,
U and V are complementary subspaces.

b. Determine whether U and V are complementary orthogonal subspaces.

solution:

U and V will be complementary orthogonal subspaces if and only if they
are complementary, and if VHU = 0, where U and V are matrices whose
columns are bases for U and V, respectively. In this case

U =

 10
1

1
1
2

 , V =

 02
1

 =⇒ VHU = [ 0 2 1 ]

 10
1

1
1
2

 = [ 1 4 ] 6= 0
and therefore, in this case U and V are not orthogonal complements.
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c. Find the matrix for the projector onto U along V , using the standard represen-
tation:

P = B

∙
In 0
0 0

¸
B−1.

where B is the matrix whose columns represent, sequentially, bases for U and V .

solution:

We have already found B and B−1 above. So, since dim(U)=2, we have:

P = B

∙
I2 0
0 0

¸
B−1 =

 10
1

1
1
2

0
2
1

  1 0 0
0 1 0
0 0 0

 3 1 −2
−2 −1 2
1 1 −1


or

P =

 1 0 0
−2 −1 2
−1 −1 2



d. If U and V are orthogonal complements, find the matrix for the projection
onto U using the representation:

P = A
¡
AHA

¢−1
AH

where A is the matrix whose columns are a basis for U and compare that the result
from part c. above.

solution:

Since, in this case, U and V are not orthogonal complements, then this
part does not apply.

e. For the matrix P found in part c., show by direct computation that P2 = P.

solution:

Direct computation (e.g. MATLAB) shows that

P2 =

 1 0 0
−2 −1 2
−1 −1 2

  1 0 0
−2 −1 2
−1 −1 2

 =
 1 0 0
−2 −1 2
−1 −1 2

 = P

4 - 1 - 2
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f. For the vector x = [ 2 3 1 ]T , find the projector of x onto U along V :

(1.) Using P as determined in part c. above.

solution:

Using P as determined in part c., then by definition, the projector of x
onto U along V is:

Px =

 1 0 0
−2 −1 2
−1 −1 2

 23
1

 =
 2
−5
−3



(2.) By finding the coordinates of x in terms of the basis for U and V ,

and compare the two.

solution:

By definition, the coordinates of x in terms of the basis for U and V are
the solution of B [x]B = x, where B is the matrix whose columns, sequentially,
represent the basis for U and V , i.e., in this case

B =

 10
1

1
1
2

0
2
1

 =⇒ [x]B = B
−1x =

 3 1 −2
−2 −1 2
1 1 −1

 23
1

 =
 7
−5
4


But, in this case, only the first two columns of B correspond to the basis for
U , and therefore the component of x in U is precisely the result of applying
only the first two of these coordinates to that basis, i.e.

Px =

 10
1

1
1
2

 ∙ 7
−5
¸
=

 2
−5
−3


i.e., exactly the same result as in part (1.) above. (Which, of course, is precisely
what should be expected.

4 - 1 - 3
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g. Compare the projector of x onto U along V computed in part f. above with
the original vector x and explain any differences.

solution:

As found in part f.,

Px =

 2
−5
−3

 while x =

 23
1


Obviously, these are not identical. That should not be unexpected, since Px
only represents the component of x in U , which, unless x lies entirely in
U to begin with, will not be identical with x.

h. Repeat parts f. and g. for the vector y = [ 2 − 1 1]T .

solution:

Using P as determined in part c., then by definition, the projector of y
onto U along V is:

Py =

 1 0 0
−2 −1 2
−1 −1 2

 2
−1
1

 =
 2
−1
1

 = y
In this case, the projector is identical with the original vector. Why this occurs
becomes clear when we compute the coordinates of this new vector in terms of
the bases for U and V ( [y]B), i.e.

[y]B = B
−1y =

 3 1 −2
−2 −1 2
1 1 −1

  2
−1
1

 =
 3
−1
0


This clearly indicates that y has no component in V , and so y ∈ U, and
therefore we expect Py = y, which is precisely what happens.

4 - 1 - 4
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2. Consider the subspaces:

U = span


 10
1

 ,
 11
2

  and V = span


 1

1
−1


and the vectors x = [ 0 1 4 ]T and y = [ 2 − 1 1 ]T .

a. Determine whether U and V are complementary subspaces.

solution:

Since U and V are subspaces of <3, they will be complementary if and
only if the combination (union) of their bases is a basis for <3. In this case, the
combined bases are simply the columns of

B =

 10
1

1
1
2

1
1
−1


But direct computation (i.e. eliminating the augmented matrix [ B | I ] to
row-reduced echelon form) shows that

B−1 =

 1 −1 0

−13 2
3

1
3

1
3

1
3 −13


Therefore, since B is invertible, its columns must be a basis for <3. Hence,
U and V are complementary subspaces.

b. Determine whether U and V are complementary orthogonal subspaces.

solution:

U and V will be complementary orthogonal subspaces if and only if they
are complementary, and if VHU = 0, where U and V are matrices whose
columns are bases for U and V , respectively. In this case:

U =

 10
1

1
1
2

 , V =

 1
1
−1

 =⇒ VHU = [ 1 1 −1 ]
 10
1

1
1
2

 = [ 0 0 ] = 0

4 - 2 - 1
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solution:

Therefore, U and V are orthogonal subspaces. But, since we’ve already
shown they are complementary, then they must be orthogonal complements.

c. Find the matrix for the projector onto U along V , using the standard represen-
tation:

P = B

∙
In 0
0 0

¸
B−1.

where B is the matrix whose columns represent, sequentially, bases for U and V .

solution:

We have already found B and B−1 above. So, noting that dim(U)=2,
we have:

P = B

∙
I2 0
0 0

¸
B−1 =

 10
1

1
1
2

1
1
−1

  1 0 0
0 1 0
0 0 0


 1 −1 0

−13 2
3

1
3

1
3

1
3 −13


or

P =


2
3 −13 1

3

−13 2
3

1
3

1
3

1
3

2
3



d. If U and V are orthogonal complements, find the matrix for the projection
onto U using the representation:

P = A
¡
AHA

¢−1
AH

where A is the matrix whose columns are a basis for U and compare that to the result
from part c. above.

4 - 2 - 2
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solution:

In this case, U and V are orthogonal complements, and therefore a
matrix whose columns are a basis for U is

A =

 10
1

1
1
2

 =⇒ AHA =

∙
1 0 1
1 1 2

¸  10
1

1
1
2

 = ∙ 2 3
3 6

¸

and so ¡
AHA

¢−1
=

∙
2 −1
−1 2

3

¸
Therefore, either by direct computation, or using MATLAB:

P = A
¡
AHA

¢−1
AH =

 10
1

1
1
2

 ∙ 2 −1
−1 2

3

¸ ∙
1 0 1
1 1 2

¸

=


2
3 −13 1

3

−13 2
3

1
3

1
3

1
3

2
3


This, of course, is identical to P as determined in part c.

e. For the matrix P found in part c., show by direct computation that P2 = P.

solution:

Direct computation (e.g. MATLAB) does show that

P2 =


2
3 −13 1

3

−13 2
3

1
3

1
3

1
3

2
3




2
3 −13 1

3

−13 2
3

1
3

1
3

1
3

2
3

 =


2
3 −13 1

3

−13 2
3

1
3

1
3

1
3

2
3

 = P

4 - 2 - 3
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f. For the vector x = [ 0 1 4 ]T , find the projector of x onto U along V :

(1.) Using P as determined in part c. above.

solution:

Using P as determined in part c., then by definition, the projector of x
onto U along V of is:

Px =


2
3 −13 1

3

−13 2
3

1
3

1
3

1
3

2
3


 01
4

 =
 12
3



(2.) By finding the coordinates of x in terms of the basis for U and V , and
compare the two.

solution:

By definition, the coordinates of x in terms of the basis for U and V are
the solution of B [x]B = x, where B is the matrix whose columns, sequentially,
represent the basis for U and V , i.e., in this case

B =

 10
1

1
1
2

1
1
−1

 =⇒ [x]B = B
−1x =

 1 −1 0

−13 2
3

1
3

1
3

1
3 −13


 01
4

 =
−12
−1


But, in this case, only the first two columns of B correspond to the basis for
U , and therefore the component of x in U is precisely the result of applying
only the first two of these coordinates to that basis, i.e.

Px =

 10
1

1
1
2

 ∙−1
2

¸
=

 12
3


i.e., exactly the same result as in part (1.) above. (Which, of course, is precisely
what should be expected.)

4 - 2 - 4
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g. Compare the projector of x onto U along V computed in part f. above with
the original vector x and explain any differences.

solution:

As found in part f.,

Px =

 12
3

 while x =

 01
4


Obviously, these are not identical. This, however, should not be totally unex-
pected, since Px only represents the component of x in U , which, unless x
lies entirely in U to begin with, will not be identical with x.

h. Repeat parts f. and g. for the vector y = [ 2 − 1 1 ]T .

solution:

Using P as determined in part c., then by definition, the projector onto U
along V of y is:

Py =


2
3 −13 1

3

−13 2
3

1
3

1
3

1
3

2
3


 2
−1
1

 =
 2
−1
1

 = y ???

In this case, the projector is identical with the original vector. Why this occurs
becomes clear when we compute the coordinates of this new vector in terms of
the bases for U and V ( [y]B), i.e.

[y]B = B
−1y =

 1 −1 0

−13 2
3

1
3

1
3

1
3 −13


 2
−1
1

 =
 3
−1
0


This clearly indicates that y has no component in V , and so y ∈ U, and
therefore we expect Py = y, which is precisely what happens.

4 - 2 - 5
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3. Find the matrix P which projects an arbitrary vector in <5 onto the subspace spanned
by:

a(1) =


1
2
1
1
0

 and a(2) =


1
−1
0
0
1


Show directly that Col(P) is identical to the span of a(1) and a(2). Also show directly
that P2 = P.

solution:

The problem is best described by the following figure, which describes the anal-
ogous problem in <3:

In terms of this problem, A is the matrix whose columns are the basis
vectors for the given subspace and Ax is the desired projection, where, from
the least squares formulation, we know:

AT Ax = AT b

=⇒ x =
¡
AT A

¢−1
AT b

=⇒ Ax = A
¡
AT A

¢
1
AT| {z }

projection matrix

b

Therefore:
P = A

¡
AT A

¢−1
AT

4 - 3 - 1
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solution:

or, in terms of this problem:
1
2
1
1
0

1
−1
0
0
1



∙
1 2 1 1 0
1 −1 0 0 1

¸
1
2
1
1
0

1
−1
0
0
1



−1 ∙

1 2 1 1 0
1 −1 0 0 1

¸

Direct computation (e.g. MATLAB) shows:

P =



3
5 0 1

5
1
5

2
5

0 3
4

1
4

1
4 −14

1
5

1
4

3
20

3
20

1
20

1
5

1
4

3
20

3
20

1
20

2
5 −14 1

20
1
20

7
20


Gaussian elimination applied to P yields:

U =



3
5 0 1

5
1
5

2
5

0 3
4

1
4

1
4 −14

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


and therefore only the first two columns of P are linearly independent, i.e.
Col(P) is two-dimensional.

To show that Col(P) is identical to Col(A), i.e. to the span of a(1) and a(2),
note that:

P = A
¡
AT A

¢−1
AT = A

¡AT A
¢−1

AT| {z }
B

 = AB
and therefore every column of P is a linear combination of the columns of A.
So the span of the columns of P is a subspace of the span of the columns of A.
But since both are two-dimensional, they must be identical.

4 - 3 - 2
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solution:

Alternatively, form the matrix:

AP =

∙
A

... P(:, 1 : 2)

¸
=


1 1 3

5 0

2 −1 0 3
4

1 0 1
5

1
4

1 0 1
5

1
4

0 1 2
5 −14


and use Gaussian elimination to show that it reduces to:

1 1 3
5 0

0 −3 −65 3
4

0 0 0 0

0 0 0 0

0 0 0 0


and therefore the third and fourth columns of AP must be linearly dependent
on the first two. But since the third and fourth columns of AP are precisely
the basis for Col(P), we again have that the the column spaces of A and P
must be identical.

Direct (MATLAB) computation shows that

P2 =



3
5 0 1

5
1
5

2
5

0 3
4

1
4

1
4 −14

1
5

1
4

3
20

3
20

1
20

1
5

1
4

3
20

3
20

1
20

2
5 −14 1

20
1
20

7
20





3
5 0 1

5
1
5

2
5

0 3
4

1
4

1
4 −14

1
5

1
4

3
20

3
20

1
20

1
5

1
4

3
20

3
20

1
20

2
5 −14 1

20
1
20

7
20



=



3
5 0 1

5
1
5

2
5

0 3
4

1
4

1
4 −14

1
5

1
4

3
20

3
20

1
20

1
5

1
4

3
20

3
20

1
20

2
5 −14 1

20
1
20

7
20

 = P

(Of course, this relationship is, essentially by definition, true for any projection!)

4 - 3 - 3
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4. Use the Gram-Schmidt method to produce an orthonormal basis for the column space
of 

1
1
1
0

0
2
1
1

−1
1
−3
1


solution:

Note that for hand calculation, it’s probably better to wait until you’ve found a
full set of orthogonal vectors before you normalize. (Avoids lots of nasty square
roots in the calculations.) But we’ll follow the classic algorthim:

The classic Gram-Schmidt algorithm is:
(1) Form: q(1) = a(1)/ka(1) k
(2) For j = 2, . . . , n , let

v(j) = a(j) − α1q(1) − · · ·− αj−1q(j−1)
where

αi = a
(j)H q(i)

then let
q(j) = v(j)/kv(j) k

In this problem, ka(1) k = √12 + 12 + 12 + 02 = √3, and therefore

q(1) =


1√
3

1√
3

1√
3

0


Then, for j = 2,

a(2) =


0
2
1
1


so

α1 = q
(1)H a(2) =

£ 1√
3

1√
3

1√
3

0
¤ 

0
2
1
1

 = 3√
3
=
√
3

4 - 4 - 1
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solution:

and so

v(2) = a(2) − α1q(1) =


0
2
1
1

− (√3)


1√
3

1√
3

1√
3

0

 =

−1
1
0
1


Since kv(2) k = √3, then

q(2) =
1√
3


−1
1
0
1

 =


− 1√

3

1√
3

0
1√
3


Now, for j = 3,

a(3) =


−1
1
−3
1


and so

α1 = q
(1)H a(3) =

£ 1√
3

1√
3

1√
3

0
¤ 
−1
1
−3
1

 = −3√
3
= −
√
3

and

α2 = q
(2)H a(3) =

£− 1√
3

1√
3

0 1√
3

¤ 
−1
1
−3
1

 = 3√
3
=
√
3

4 - 4 - 2
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solution:

Therefore

v(3) = a(3) − α1q(1) − α2q(2)

=


−1
1
−3
1

− (−√3)


1√
3

1√
3

1√
3

0

− (√3)

− 1√

3

1√
3

0
1√
3

 =


1
1
−2
0



Therefore, since kv(3) k = √6,

q(3) =


1√
6

1√
6

− 2√
6

0


These are clearly orthogonal, i.e.

q(1)
H
q(2) =

£ 1√
3

1√
3

1√
3

0
¤

− 1√

3

1√
3

0
1√
3

 = 0

q(1)
H
q(3) =

£ 1√
3

1√
3

1√
3

0
¤


1√
6

1√
6

− 2√
6

0

 = 0
and

q(2)
H
q(3) =

£− 1√
3

1√
3

0 1√
3

¤


1√
6

1√
6

− 2√
6

0

 = 0
Furthermore, since we normalized the q(i) as we constructed then, they are
also, by definition, orthonormal.

4 - 4 - 3
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5. Use the classic Gram-Schmidt method to produce a QR factorization of

A =


1
1
1
1

−1
−3
−1
−3

5
−1
3
−3


solution:

The classic Gram-Schmidt algorithm, modified to produce a QR factorization
as a byproduct of producing an orthonormal basis, is:

(1) Form: q(1) = r11 a
(1) =⇒ r11 = ka(1) k

(2) For j = 2, . . . , n:
(i) let: v(j) = a(j) − r1jq(1) − · · ·− r(j−1)jq(j−1)

where ri,j = a
(j)H q(i)

(ii) then: q(j) = rjj v
(j) =⇒ rjj = kv(j) k

Therefore, in this problem

a(1) =


1
1
1
1


Therefore

ka(1) k = 2 =⇒ q(1) =
1

2
a(1) =


1
2
1
2
1
2
1
2


Then, for j = 2,

a(2) =


−1
−3
−1
−3


so

r12 = q
(1)H a(2) = [ 1

2
1
2

1
2

1
2 ]


−1
−3
−1
−3

 = −8
2
= −4

4 - 5 - 1
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solution:

and so

v(2) = a(2) − r12q(1) =


−1
−3
−1
−3

− (−4)


1
2
1
2
1
2
1
2

 =


1
−1
1
−1


Therefore

r22 = kv(2) k = 2 =⇒ q(2) =
1

2
v(2) =


1
2

−12
1
2

−12


Now, for j = 3,

a(3) =


5
−1
3
−3


and so

r13 = q
(1)H a(3) = [ 1

2
1
2

1
2

1
2 ]


5
−1
3
−3

 = 4

2
= 2

and

r23 = q
(2)H a(3) = [ 1

2 −12 1
2 −12 ]


5
−1
3
−3

 = 12

2
= 6

and

v(3) = a(3) − r13q(1) − r23q(2) =


5
−1
3
−3

− (2)


1
2
1
2
1
2
1
2

− (6)


1
2

−12
1
2

−12

 =


1
1
−1
−1



4 - 5 - 2
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solution:

Therefore

r33 = kv(3) k = 2 =⇒ q(3) =
1

2
v(3) =


1
2
1
2

−12
−12


The fact that these are orthogonormal, i.e. that q(i)

T
q(j) = 0 , i 6= j

and kq(i) k = 1 can easily be checked. For example

q(1)
T
q(3) = [ 1

2
1
2

1
2

1
2 ]


1
2
1
2

−12
−12

 = 0
and

kq(2) k =
r
(
1

2
)2 + (−1

2
)2 + (

1

2
)2 + (−1

2
)2 = 1

Therefore

Q =


1
2
1
2
1
2
1
2

1
2

−12
1
2

−12

1
2
1
2

−12
−12


and, using the values computed above:

R =

 2 −4 2
0 2 6
0 0 2


Direct computation will verify that

QR =


1
2
1
2
1
2
1
2

1
2

−12
1
2

−12

1
2
1
2

−12
−12


 2 −4 2
0 2 6
0 0 2

 =


1
1
1
1

−1
−3
−1
−3

5
−1
3
−3



4 - 5 - 3
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6. Use the modified Gram-Schmidt method to produce a QR factorization of

A =


1
1
1
1

−1
−3
−1
−3

5
−1
3
−3



solution:

The modified Gram-Schmidt algorithm, produces a QR factorization as a
byproduct of producing an orthonormal basis, according to:

(1) Let: v(i) = a(1) , i = 1, . . . , n
(2) For j = 1, . . . , n:

Form: q(j) = rjj v
(j) =⇒ rjj = kv(j) k

Remove the component in the direction of q(j) from each remain-
ing v(k) using:

v(k) = v(k) − rjkq(j)

where rjk = q
(j)H v(k)

Therefore, in this problem

v(1) =


1
1
1
1

 , v(2) =


−1
−3
−1
−3

 , and v(3) =


5
−1
3
−3


So, for j = 1

kv(1) k = 2 =⇒ q(1) =
1

2
v(1) =


1
2
1
2
1
2
1
2


Now remove any components of this from the remaining columns, i.e. for k = 2:

r12 = q
(1)H v(2) = [ 1

2
1
2

1
2

1
2 ]


−1
−3
−1
−3

 = −8
2
= −4

4 - 6 - 1
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solution:

and so v(2) becomes

v(2) =


−1
−3
−1
−3

− (−4)


1
2
1
2
1
2
1
2

 =


1
−1
1
−1


Similarly, for k = 3, we have:

r13 = q
(1)H v(3) = [ 1

2
1
2

1
2

1
2 ]


5
−1
3
−3

 = 4

2
= 2

and so v(3) becomes

v(3) = v(3) − r13q(1) =


5
−1
3
−3

− (2)


1
2
1
2
1
2
1
2

 =


4
−2
2
−4



This completes the algorithm for the first (j = 1) column. Therefore, we
move on to the second one, (j = 2):

r22 = kv(2) k =

°°°°°°°


1
−1
1
−1


°°°°°°° = 2 =⇒ q(2) =

1

2
v(2) =


1
2

−12
1
2

−12


Then remove any component in the direction of this vector from the remain-
ing (k = 3) column,

r23 = q
(2)H v(3) = [ 1

2 −12 1
2 −12 ]


4
−2
2
−4

 = 12

2
= 6

4 - 6 - 2
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solution:

yielding

v(3) = v(3) − r23q(2) =


4
−2
2
−4

− (6)


1
2

−12
1
2

−12

 =


1
1
−1
−1



This completes the algorithm for the second (j = 2) column. So we move
on to

r33 = kv(2) k =

°°°°°°°


1
1
−1
−1


°°°°°°° = 2 =⇒ q(3) =

1

2
v(3) =


1
2
1
2

−12
−12



Since there are no more columns to remove components in the direction of q(3)

from, we’re done!

The fact that the q(i) we’ve found are orthogonormal, i.e. that can easily
be checked. For example

q(1)
T
q(3) = [ 1

2
1
2

1
2

1
2 ]


1
2
1
2

−12
−12

 = 0
and

kq(2) k =
r
(
1

2
)2 + (−1

2
)2 + (

1

2
)2 + (−1

2
)2 = 1

Therefore

Q =


1
2
1
2
1
2
1
2

1
2

−12
1
2

−12

1
2
1
2

−12
−12
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solution:

and, using the values computed above:

R =

 2 −4 2
0 2 6
0 0 2


Direct computation will verify that

QR =


1
2
1
2
1
2
1
2

1
2

−12
1
2

−12

1
2
1
2

−12
−12


 2 −4 2
0 2 6
0 0 2

 =


1
1
1
1

−1
−3
−1
−3

5
−1
3
−3
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7. Find a sequence of upper triangular matrices R̃(i), each corresponding to a single step
of the classic Gram-Schmidt method, such that the matrix Q in the QR factorization
in problem 5 can be written:

Q = AR̃(1)R̃(2)R̃(3)

Show also by direct computation that the matrix R from the QR factorization can be
written in terms of the inverses of these R̃(i) as:

R =
³
R̃(3)

´−1 ³
R̃(2)

´−1 ³
R̃(1)

´−1
solution:

We have already performed the classic Gram-Schmidt algorithm on this
matrix, so we can use any results from that problem here. Specifically, observe
the first step there was:

q(1) =
1

2
a(1) =


1
2
1
2
1
2
1
2


But, in block matrix form, we can write this as

∙
q(1)

... a(2)
... a(3)

¸
=

∙
a(1)

... a(2)
... a(3)

¸
1
2 0 0

0 1 0

0 0 1


| {z }

R̃(1)

= AR̃(1)

In the next step, we effectively first replace a(2) by

v(2) = a(2) − (−4)q(1)

then replace that vector (which we interpret as the component of a(2) orthog-
onal to q(1)) by

q(2) =
1

2
v(2)

In block matrix form, this is equivalent to

∙
q(1)

... q(2)
... a(3)

¸
=

∙
q(1)

... a(2)
... a(3)

¸ 1 4 0

0 1 0

0 0 1


 1 0 0

0 1
2 0

0 0 1
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solution:

or, equivalently, multiplying the two matrices and using our first step result

∙
q(1)

... q(2)
... a(3)

¸
=

∙
q(1)

... a(2)
... a(3)

¸
| {z }

AR̃(1)

 1 2 0

0 1
2 0

0 0 1


| {z }

R̃(2)

= AR̃(1)R̃(2)

Finally, we addressed the third column by first replacing a(3) by

v(3) = a(3) − (2)q(1) − (6)q(2)

then finding

q(3) =
1

2
v(3)

In block matrix form, we can express this as

∙
q(1)

... q(2)
... q(3)

¸
=

∙
q(1)

... q(2)
... a(3)

¸ 1 0 −2
0 1 −6
0 0 1


 1 0 0

0 1 0

0 0 1
2


Mulitplying the two matrices on the right and using our second result yields

∙
q(1)

... q(2)
... q(3)

¸
| {z }

Q

=

∙
q(1)

... q(2)
... a(3)

¸
| {z }

AR̃(1)R̃(2)

 1 0 −1
0 1 −3
0 0 1

2


| {z }

R̃(3)

= AR̃(1)R̃(2)R̃(3)

or equivalently, as can be verified by direct computation
1
2
1
2
1
2
1
2

1
2

−12
1
2

−12

1
2
1
2

−12
−12

 =

1
1
1
1

−1
−3
−1
−3

5
−1
3
−3



1
2 0 0

0 1 0

0 0 1


 1 2 0

0 1
2 0

0 0 1


 1 0 −1
0 1 −3
0 0 1

2


(Note how each R̃(i) has exactly one column that not a column of the identity.)
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solution:

Finally, direct computation shows that

³
R̃(3)

´−1 ³
R̃(2)

´−1 ³
R̃(1)

´−1
=

 2 0 0
0 1 0
0 0 1

 1 −4 0
0 2 0
0 0 1

 1 0 2
0 1 6
0 0 2



=

 2 −4 2
0 2 6
0 0 2

 = R
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8. Find a sequence of upper triangular matrices R(i), each corresponding to a single step
of the modified Gram-Schmidt method, such that the matrix Q in the QR factorization
in problem 6 can be written:

Q = AR(1)R(2)R(3)

Show also by direct computation that the matrix R from the QR factorization can be
written in terms of the inverses of these R(i) as:

R =
³
R(3)

´−1 ³
R(2)

´−1 ³
R(1)

´−1

solution:

We have already performed the modified Gram-Schmidt algorithm on this
matrix, so we can use any results from that problem here. Specifically, observe
the first step there was:

v(i) = a(i) , i = 1, 2, 3

followed immediately by

q(1) =
1

2
a(1)

and then removed any components in the direction of q(1) from the remaining
columns, i.e.

v(2) = v(2) − (−4)q(1) and
v(3) = v(3) − (2)q(1)

In block matrix form, we can express this as

∙
q(1)

... v(2)
... v(3)

¸
=

∙
a(1)

... a(2)
... a(3)

¸
1
2 0 0

0 1 0

0 0 1


 1 4 −2
0 1 0

0 0 1


or multiplying out the two matrices on the right

∙
q(1)

... v(2)
... v(3)

¸
=

∙
a(1)

... a(2)
... a(3)

¸
| {z }

A


1
2 2 −1
0 1 0

0 0 1


| {z }

R(1)

= AR(1)
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solution:

In the next step, we first replace v(2) by

q(2) =
1

2
v(2)

and then remove any components in the direction of q(2) from the remaining
columns, i.e.

v(3) = v(3) − (6)q(2)

In block matrix form, this is equivalent to

∙
q(1)

... q(2)
... v(3)

¸
=

∙
q(1)

... v(2)
... v(3)

¸ 1 0 0

0 1
2 0

0 0 1


 1 0 0

0 1 −6
0 0 1


(Note this is not, strictly speaking, an equality in the mathematical sense, but
in the programming sense, i.e. in the way that, in MATLAB, e.g.

x = x+ y

replaces the value currently stored in the memory location labeled x with the
value x+ y.) But, multiplying out the two matrices on the right and using our
earlier result, we have

∙
q(1)

... q(2)
... v(3)

¸
=

∙
q(1)

... v(2)
... v(3)

¸
| {z }

AR(1)

 1 0 0

0 1
2 −3

0 0 1


| {z }

R(2)

= AR(1)R(2)

Finally, we addressed the third column by replacing v(3) by

q(3) =
1

2
v(3)

In block matrix form, we can express this as

∙
q(1)

... q(2)
... q(3)

¸
| {z }

Q

=

∙
q(1)

... q(2)
... v(3)

¸
| {z }

AR(1)R(2)

 1 0 0

0 1 0

0 0 1
2


| {z }

R(3)

= AR(1)R(2)R(3)
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solution:

Therefore, we have
Q = AR(1)R(2)R(3)

or equivalently, as direct computation will verify
1
2
1
2
1
2
1
2

1
2

−12
1
2

−12

1
2
1
2

−12
−12

 =

1
1
1
1

−1
−3
−1
−3

5
−1
3
−3



1
2 2 −1
0 1 0

0 0 1


 1 0 0

0 1
2 −3

0 0 1


 1 0 0

0 1 0

0 0 1
2


(Note, in contrast to the classical Gram-Schmidt method, each R(i) here has
exactly one row that is not a row of the identity. )

Finally, direct computation also shows that

³
R(3)

´−1 ³
R(2)

´−1 ³
R(1)

´−1
=

 2 −4 2
0 1 0
0 0 1

 1 0 0
0 2 6
0 0 1

 1 0 0
0 1 0
0 0 2



=

 2 −4 2
0 2 6
0 0 2

 = R
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9. Use the modified Gram-Schmidt method to produce a reduced QR factorization of

A =


5
3
−1
1

2
6
−4
4


solution:

The modified Gram-Schmidt algorithm, modified to produce a QR factoriza-
tion as a byproduct of producing an orthonormal basis, is:

(1) Let: v(i) = a(1) , i = 1, . . . , n
(2) For j = 1, . . . , n:

Form: q(j) = rjj v
(j) =⇒ rjj = kv(j) k

Remove the component in the direction of q(j) from each remain-
ing v(k) using:

v(k) = v(k) − rjkq(j)

where rjk = q
(j)H v(k)

Therefore, in this problem

v(1) =


5
3
−1
1

 , and v(2) =


2
6
−4
4


So, for j = 1 , r11 = kv(1) k = p

52 + 32 + (−1)2 + 12 = √36 = 6 and
therefore

q(1) =
1

6
v(1) =


5
6
3
6

−16
1
6


Now remove any components of this from the remaining columns, i.e. for k = 2:

r12 = q
(1)H v(2) = [ 5

6
3
6 −16 1

6 ]


2
6
−4
4

 = 36

6
= 6
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solution:

and so v(2) becomes

v(2) =


2
6
−4
4

− (6)


5
6
3
6

−16
1
6

 =

−3
3
−3
3



This completes the algorithm for the first (j = 1) column. Therefore, we
move on to the second one, (j = 2):

r22 = kv(2) k =

°°°°°°°

−3
3
−3
3


°°°°°°° = 6 =⇒ q(2) =

1

6
v(2) =


1
2

−12
1
2

−12



This completes the algorithm for the second (j = 2) and, in this case, last
column. So we’re done!

The fact that the q(i) we’ve found are orthogonormal can easily be checked
and is omitted here. Therefore, using the values computed above:

Q =


5
6
3
6

−16
1
6

1
2

−12
1
2

−12

 and R =

∙
6 6
0 6

¸

Direct computation will verify that

QR =


5
6
3
6

−16
1
6

1
2

−12
1
2

−12

 ∙ 6 6
0 6

¸
=


5
3
−1
1

2
6
−4
4
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10. Create an orthogonal plane (Givens) rotation matrix (Q) which uses the third row of:

A =


1
1
1
1

−1
−3
−1
−3

4
−1
3
−3


to zero out the element currently in the (1,3) position.

solution:

In <4, the rotation (Givens) matrix that combines the first and third rows will
have the form:

Q =


c 0 −s 0
0 1 0 0
s 0 c 0
0 0 0 1


and will produce the result:

R1 ← cR1 − sR3
R3 ← sR1 + cR3

and therefore
a13 ← ca13 − sa33

which, in order to zero out a13 while also ensuring c
2 + s2 = 1 requires

c =
a33p

a213 + a
2
33

and s =
a13p

a213 + a
2
33

and so

c =
3√

42 + 32
=
3

5
and s =

4√
42 + 32

=
4

5

or

Q =


3
5 0 −45 0

0 1 0 0
4
5 0 3

5 0

0 0 0 1
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solution:

Direct calculation will show:

QA =


3
5 0 −45 0

0 1 0 0
4
5 0 3

5 0

0 0 0 1



1
1
1
1

−1
−3
−1
−3

4
−1
3
−3

 =

−15 1

5 0

1 −3 −1
7
5 −75 5

1 −3 −3


Note that the zero is in the correct position, and that, as should have been
expected, the second and fourth rows of the product are unchanged from the
original matrix.
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11. Produce a reflection (Householder) matrix (Q) and the associated vector (u) which
will zero out the elements below the second row in the first column of:

A =


1
−2
4
2
5

−1
−3
−1
−3
1

4
−1
3
−3
−1



solution:

Householder reflections have the form:

Q = I− 2uu
T

uT u

in order to specifically zero out the elements in rows three through five of column
one, u must have the general form:

u =


0
u2
u3
u4
u5


where

ui = ai1 , i = 3, 4, 5 and u2 = a21 −
q
a221 + a

2
31 + a

2
41 + a

2
51

(where we choose the minus sign because a21 is negative). Therefore

u2 = (−2)−
p
(−2)2 + (4)2 + (2)2 + (5)2 = (−2)−

√
49 = −9

and therefore

u =


0
−9
4
2
5


Given this we can then construct Q as:
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solution:

Q = I− 2uu
T

uT u
=


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 −


0
−9
4
2
5

 [ 0 −9 4 2 5 ]

[ 0 −9 4 2 5 ]


0
−9
4
2
5



=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 − 1

126


0 0 0 0 0
0 81 −36 −18 −45
0 −36 16 8 20
0 −18 8 4 10
0 −45 20 10 25



=


1 0 0 0 0

0 −27 4
7

2
7

5
7

0 4
7

47
63 − 8

63 −2063
0 2

7 − 8
63

59
63 −1063

0 5
7 −2063 −1063 38

63


Direct calculation can then show:

QA =


1 0 0 0 0

0 −27 4
7

2
7

5
7

0 4
7

47
63 − 8

63 −2063
0 2

7 − 8
63

59
63 −1063

0 5
7 −2063 −1063 38

63




1
−2
4
2
5

−1
−3
−1
−3
1

4
−1
3
−3
−1



=


1 −1 4

7 1
7

3
7

0 −15163 149
63

0 −23363 −20963
0 −4763 −11363
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12. Consider the full QR factorization of the matrix:

A =


1
1
1
1

−3
5
3
3

 =


1
2 −56 −16 −16
1
2

3
6 −36 −36

1
2

1
6

5
6 −16

1
2

1
6 −16 5

6



2 4 0 0

0 6 0 0

0 0 0 0

0 0 0 0


Find the least squares solution to

Ax =


−43
−3
−10
−16


by using both the normal equations and the QR factorization shown. Also confirm that
your residual is orthogonal to the column space of A

solution:

The normal equations formulation of the least squares problem is:

ATAx = ATb

In this instance that becomes:

∙
1 1 1 1
−3 5 3 3

¸
1
1
1
1

−3
5
3
3

∙x1
x2

¸
=

∙
1 1 1 1
−3 5 3 3

¸
−43
−3
−10
−16


or ∙

4 8
8 52

¸ ∙
x1
x2

¸
=

∙−72
36

¸
Gaussian elimination produces: 4 8

... −72
8 52

... 36

 −→
 4 8

... −72
0 36

... 180

 =⇒ x1 = −28
x2 = 5
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solution:

Given the QR factorization, the least squares problem can be solved as

Ax = b =⇒ QRx = b =⇒ Rx = QTb

or in this case:
2 4 0 0

0 6 0 0

0 0 0 0

0 0 0 0



x1
x2
x3
x4

 =


1
2

1
2

1
2

1
2

−56 3
6

1
6

1
6

−16 −36 5
6 −16

−16 −36 −16 5
6



−43
−3
−10
−16

 =

−36
30
3
−3


(Note that when the full matrixQ is used, the resulting system is, as in this case,
almost always inconsistent. This, on reflection, should have been expected.)
The consistent part of this system:

2x1 + 4x2 = −36
6x2 = 30

=⇒ x1 = −28
x2 = 5

i.e. the same solution as obtained by using the normal equations. (A result
that should have been expected!) The resulting residual is

r = b−Ax =


−43
−3
−10
−16

−

1
1
1
1

−3
5
3
3

∙−28
5

¸
=


0
0
3
−3


But then:

a(1)
T
r = [ 1 1 1 1 ]


0
0
3
−3

 = 0
and

a(2)
T
r = [−3 5 3 3 ]


0
0
3
−3

 = 0
i.e. the residuals are orthogonal to the columns (and hence the column space)
of A.
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